
JOURNAL OF
PURE AND
APPLIED ALGEBRA

ELSES’IER Journal of Pure and Applied Algebra I19 (1997) 237-253

Computation of Hilbeti-Poincark series

Anna M. Bigatti *
Dipurtimento di Matematica, Universitci di Genova, Genoca, Italy

Communicated by L. Robbiano; received 22 March 1995

Abstract

We describe a new algorithm for computing standard and multi-graded Hilbert-Poincare series
of a monomial ideal. We compare it with different strategies along with implementation details
and timing data. @ 1997 Elsevier Science B.V.

1991 Math. Subj. Class.: Primary 13D40, 13-04, 13P99; Secondary 13P10, 68Q40

1. Introduction

Many papers have been written to present different algorithms to compute the Hilben-

Poincare series of a monomial ideal. In this paper we want to do something which

previous papers on this topic have not completely done: we give a very detailed de-

scription of our work along with implementation details and timing data, explaining

how different strategies influence the behaviour of the program, and why sometimes

theoretically optimal strategies are not good in practice.

The timings we obtain are almost negligible compared with the corresponding

GrSbner basis computation. It follows that the Hilbert-Poincari series may be fruitfully

used as a tool for other computations, for instance in the Hilbert-driven Buchberger

algorithm (see [6, 91).

In Section 2, after setting out the notation, we give the theoretical information defin-

ing the main cases we will meet during the computation: pivot-case, splitting-case and

base-case. Section 3 briefly describes the structure of the algorithm and in Section 4

we mention the examples on which we will test the different strategies.

Section 5 deals with the pivot-case. The choice of the pivot is the main distinction

between the known algorithms. We suggest a new choice and compare it with the

* E-mail: bigatti@dima.unige.it

0022-4049197/$17.00 @ 1997 Elsevier Science B.V. All rights reserved

PI1 SOO22-4049(96)00035-7

238 A.M. Bigattil Journal qf Purr and Applied Algebra 119 (1997) 237-253

others. Then we deal with the interreduction of the power-product lists. Its complexity

is quadratic in the length of the list, whereas all the other operations have linear

complexity, so it is the most time costly operation in the computation of Hilbert-

Poincare series.

In Section 6 we compare the cost of looking for general splitting-cases with the

benefits they might bring, and we describe their specialisation into total-splitting-cases.

Section 7 analyses the data structures. We point out the operations we need on poly-

nomials and describe our extended representation for power-products, consisting of

dense representation + support + bit-support. Finally, in Section 8, a table is given

with the best timings published in [2] and the timings we get with our implementation

in the new system GJCM 3.

2. Definitions, terminology and notation

Let k be a field and R := k[Xl , . . . ,Xl] be a Z’-graded ring where, for some term-

ordering 0 on Z’, deg Xi >. 0 for each i = I,. . . ,N and let A4 = edEz, I& be a

finitely generated Z’-graded module over R. The A4d’s are finite dimensional k-vector

spaces (see [l, Chapters 10, 111). Note that whereas traditionally the degree d is a

non-negative integer, we allow d E Z’, i.e., what we are going to see holds in general

for “multigraded” rings and modules and it trivially specializes into the traditional

N-graded case with the usual definition of degree.

The function

HAJ : Z’ + N with HM(dl,. , d,) := dim(A4d ,,,.., d,)

is called the Hilbert function of M. The Hilbert-PoincarP series of A4 is

HP,(t) = c HM(d)td
dEZ’

(where td := tfl t,“,) and from the Hilbert-Serve theorem we know that it can be

written as

HPM(t) = Q(t)

rIi =,,..., N(1 - tdegX > ’
(1)

where Q(t) E Z[t,,. . . ,t,.,tl’, . . . , t;‘].
The computation of a Hilbert-Poincare series of an R-module may be reduced, via

any Grobner basis, to the computation of the Hilbert-Poincare series of some k-algebras

of type R/Z where I is a monomial ideal (see [2, 31). In particular it is well known

that if I is a (multi)homogeneous ideal in R, then HPR,, = HPR/I,,(,) (see [13, 151) and

In(r) can be computed since it is generated by the leading terms of the elements of

any Grobner basis of I.

A.M. Biyattil Journal of’ Pure and Applied Algebra I19 (1997) 237-253 239

The polynomial Q(t) will be denoted by (I) (following the notation in [2, 31) and

we will show how to compute it. (For more details about multivariate Hilbert-Poincare

series see [6].)

Example 1. Let R/(X,, . . . ,XAJ) = k and

@-I,...,&)
nix,,)\I(1 - tdegX, >

= Hfk(f) = 1.

Then

(X,.. ..,XPg) = j-J (1 - td@). (2)
l=l,...,n:

In particular if R/I is a standard algebra, i.e., N-graded and degXi = 1 for all

i = l,...,N, then

where (I) E Z[t]. In this case for all sufficiently large d, /f~,,(d) is a polynomial in d

(see [1, 161).

Example 2. Let R = k[X,, ,&I be standard. Then R = edEN Rd where each Rd
is minimally generated as a k-vector by all the (“+,“-I) power-products of degree d.
Therefore,

HfR(t) = 2 dim(Rd)td = 5 (” +i - ‘)ld = l/(1 - t)N.

1=0 i=o

Hence (0) = 1.

After this simple example let us see a few interesting cases which will provide us

with a recursive method to compute the Hilbert-Poincare series of a (multi)graded

algebra.

2. I. Pivot-case

All the recent algorithms [2-4, 10, 121 are based on the following short exact se-

quence of graded R-modules (let 9 be a monomial of degree d = (dl, . . , d,) which

will be called the pivot as in [4])

0 + R/(I : 9) s R/I -+ R/(1,9’) -+ 0

which yields fWkj,(t) = ffp,&.j(,,,+)(t) + td(HP~/c,,p~(t)) and then

(I) = (I,Y) + td(l : 9). (3)

240 A.M. Bi~utti~J~j~~~al of Pure and Applied Algebra I19 (1997) 237-253

If we choose Y strictly dividing at least one of the generators of I, then the total

degrees of (Z,9) and (I : 9) are lower than the total degree of Z (where with total

degree we mean the sum of the traditional N-degrees in the minimal set of generators).

In [2], 9 is chosen to be one of the generators and (3) is read as (I,?) = (Z) -

td(Z : 9). In this way the number of the generators decreases.

So the pimt-case reduces the computation of (Z) to two “simpler” computations (see

Section 5). This process is called horizontal splitting in [4].

Example 3. Observe that if 9 is a non-zero-divisor in R/I, then Z = (I : 9). Thus,

by (3), (Z,Y) = (1 -t+-@)(Z).

Since X 1,. . ,X, form a regular sequence it follows that

(X ,,..., &I) = (1 - @X’)(&)...) XN) = ‘.’ = n (1 - Pq(0)
1=1.....N

From (2) we have (X1,. . . ,&) = n ,=,.,,,, ,,,(1 - tdegx), therefore

(0) = 1 (4)

as we have already seen in Example 2 for standard algebras.

2.2. Splitting-case

Sometimes it happens that we can partition the set of the indeterminates into disjoint

non-empty subsets X1,. ,X, such that each generator of our monomial ideal Z belongs

to a k[Xj] for some j. We shall call this a splitting-case.

Let Ij := Z n k[Xj] and observe that R/Z = k[X1]/Z, @J . . @ k[X,]/I,.

Since Hilbert-PoincarC series multiply with respect to tensor products it follows that

ZR%Y(t) = ZQx,]/r,(t) ” .fff%[X,]II,(t).
Then

(4 (4) m
n, =I,,,,, N(l -tdegX) = &x,(l -td”““)“TI,y&x,(l -tdegK1

and therefore

(I) = (I,) (I,.)

which is called vertical splitting in [4] and varimt (B) in [2].

2.3. Buse-cases

(5)

Using (3) and (5) we can reduce our computation to simpler ones; now we must

choose our base-cases. (0) = I is a base-case, but it is obviously better if we use a

more general base-case in order to avoid some recursion calls.

A.M. Bigattil Journal of Pure and Applied Algebra 119 (1997) 237-253 241

For example we shall see that we can easily compute (Z) when I is generated by

simple-powers, i.e., power-products where only one indeterminate has non-zero power.

Then, apart from the actual computation of the base-cases, we shall almost ignore the

presence of the simple-powers and, given a list of power-products, we will say it is a

n-list if it contains n power-products which are not simple. This fact extends what is

called variant (A) in [2].

2.3.1. O-Base-case

Let I be generated by simple-powers, i.e., (X”“’ n, , . . . ,XnTT). This is a O-list. Note that

Xi:‘, . . . ,X2’ form a regular sequence. Repeating the same reasoning as in Example 3

and recalling from (4) that (0) = 1 we get

(6)

which yields for the standard-case

(XnT”I) ,x$) = JJ (1 - tanI).
i=l,...,.r

2.3.2. I-Base-case

Consider the l-list (P,X~~‘, . . . ,X2’) where 9 = Xp’ . .A$? , Since we assume to

work with interreduced lists (see Section 5.2), we have a,,, > p,,, for each i = 1,. . ,s.

Combining the results in (3) and (6) we have

from which it follows that

(y,&‘,“:~,,..,q~) = n (1 _ ,d@>) _ pkz+’ n (1 _ tdcgX,::“‘-p”‘) (7)
f=l,...,S i=l,....s

and for the standard-case

(:y,xnq”l)...) Xn4”\) = n (1 -p+tdeg~ I-I (1 -p--5)

i= I)_.., s (i=l,...,s 1
Note that if 9’ is coprime with all the simple-powers X$, then pn, = 0 for each

i= 1 , . . . , s; thus (7) becomes simpler:

(y&w ,,,,, xn4”~) = (1 _ tdegp) I-I (1 - td@‘?’)I .
i=l,...,S

242 A.M Bi~~~lil~ournai c!f. Pure and Applied Algebra 119 (1997) 237-253

3. The algorithm

Input: I = (Tl,. . . , ry) with Ti power-products in A = k[Xl,. . . ,2&l

output: (I)

Function HPNum(I)

begin

if I is a base-case then return (Z);

else if I is a splitting-case then return HPNum(ll) . . .HPNum(Z,);

else

end.

choose u pimt 9;

return HPNum(/,9’) + tdegdHPNum(Z : 9);

4. Examples

In this section we briefly mention the computational examples to compare the dif-

ferent strategies we have implemented and to give the timings we get with our version

in GXM 3.

All the timings we give are referred to standard Hilbert-Poincar6 series computations

with 32-bit coefficients and assuming the input list interreduced.

If you use 32-bit integers, then (Xl,. . ,X34) = (1 - t)34 cannot be computed because

the coefficient of t17 in (1 - t)34 is (:;) = 2 333 606 220 and it is bigger than 231 - 1 =

2 147483 647 which is the biggest signed 32-bit integer. Note also that ((X, Y)D) =

1 - (D + l)tD + LIP+‘, and then there is no upper bound for the coefficients of the

Hilbert-Poincark numerator depending on the number of indeterminates. This means

that no finite arithmetics can guarantee the result. The simplified Hilbert-Poincark series

of the examples we mention are computed correctly.

First of all we operate on some well-known benchmarks introduced by Bayer and

Stillman in [2], and we refer the reader to that paper for their detailed description.

They are listed in Table 1.

We will name “power N, D” the ideals generated by the first 10 000 power-products

in lexicographic order of {Xl,. . . ,XA,‘)~.

Table I

Example Indet’s W’s Example nr

mayrl2 21 444 4.4

mayr13 21 610 4.4

prod4 32 500 4.2

square5 25 1371 4.1

mayr22 31 3204 4.4

mayr23 31 8100 4.4

prod5 50 4785 4.2

A.M. BigaitilJournal of Pure and Applied Algebra 119 (1997) 237-253 243

A new class of benchmarks, suggested by Jesus De Loera and Bernd Sturmfels, is

represented by the “chess-examples”. To compute them label with an indeterminate

each square of an n x n chess-board. The ideal for a fixed piece is the ideal generated

by the power-products XiXj where the move from the square labelled Xi to the square

labelled Xj is a legal move for that piece. For example, the ideal “king 8x8” contains

&I&2, &l&l, x41&2, . . . , and does not contain XAt&3, &1&3. These are a subset

of the graph-ideals, generated by the power-products of the couple of “vertices” of a

graph linked with an edge. This class was used to prove that the problem of computing

the dimension, a sub-problem of the computation of the Hilbert-Poincare series, is NP-

complete (see [2, Proposition 2.91, and also [8, 111).

5. The pivot-case

5. I. Choosing the pivot

In Section 2 we said that all the recent algorithms are based on Eq. (3):

(I) = (I,P) + Pq : 9).

Let us see a very small example in order to understand the importance of choosing

a good pivot and highlight the behaviour of the different choices.

Example 4. Let I be the ideal generated by the 4-list

(xz~,x~y~2,xy~~,x3yzw).

Let B = y”:

(x2, x2y2z, xy%, x3yzw) = (x2, x2y22, xy%, yw) + t2 (x2, x2yz, xys, x3z).

Let 9 = xz:

(x2, x2y2z, xy%, x3yzw) = (xz) + ?(2, xy%, y3, x2yw).

The first choice generates two 4-lists (though simpler) and the second gives a l-list

and a 2-list. The latter is definitely better.

Let us have a closer look at the known algorithms.

5.1.1. Indeterminate-pivot

If the pivot Y is an indeterminate, then (I,g) is likely to have much fewer minimal

generators than I because, as 9 is very small, many generators may be multiples of

9. On the other hand, (I : 9) might be as large as I is because of the same reason,

especially if the power-input has high degree. Consider the ideal of Example 4 with

9 := x. We get a O-list and a 3-list:

(xz3, 2y%, xy%, x3yzw) = (x) + t(2, xy2z, y%, x2yzw).

244 A.M. BigattilJournal of Pure and Applied Algebra 119 (1997) 237-253

This is the choice suggested in [lo]. Refs. [3, 121 follow the same idea, but split the

computation into several ones whose input lists have no more occurrences of the pivot-

indeterminate - these lists are defined using (3) inductively. This strategy is extremely

sensitive to the choice of the indeterminate because it forces the pivot for several

pivot-cases, but [3] suggests a good but costly procedure to look for the best one (in

order to minimize the number of base-cases) and proves that the algorithm is optimal

on Bore1 Fixed ideals.

5.1.2. Generator-pivot

In [2] the input ideal is regarded as (I,Y), where the pivot 9’ is the least generator

in RevLex; then (3) is read as (I,Y) = (I) - t des’ (I : 9). Therefore they always get

the ideal 1 which has exactly one generator less than the original input ideal, and the

ideal (I : 9) which is expected to have very few minimal generators. In Example 4,

9 = x3yzw gives a 3-list and a O-list:

(x.73, x2y2z, xy3z, x3yzw) = (xz3, x2y2z, xy3z) - t6(z2,y).

In particular, [2] shows that if the input ideal is Bore1 Fixed, then (I : 9) is a O-base-

case. Hence, the generator-pivot strategy is also theoretically optimal on Bore1 Fixed

ideals.

Note that in both cases the computation splits into two branches, one far bigger than

the other.

5.1.3. GCD-pivot

Ref. [4] points out that usually combinatorial algorithms can be speeded up by a

“Divide and Conquer” approach, i.e., splitting the problem into two smaller problems

of approximately the same size. Hence it suggests taking as pivot the GCD of three

random power-products chosen among those containing the indeterminate occurring

most. In Example 4 both x and z occur in each power-product. The possible GCDs in

the list are xz or xyz. We have already seen that Pp := xz gives a l-list and a 2-list.

If we choose 9’ := xyz, then we get two 2-lists:

(x23, x2y’.Z, xy3z, XQZW) = (xyz, XZ3) + t3(& xy, y2, x2=).

Being the choice of the GCD-pivot “random”, it cannot be proved to be “optimal”

on some class of examples, but experience shows that it performs well on many types

of inputs.

After what we have showed we would say that the GCD-pivot is the best strategy.

It is better than the approach in [3] because its pivot selection is very fast. It is better

than the indeterminate-pivot because it leads to fewer base-cases. It is better than the

generator-pivot because the more balanced computation gives shorter interreductions

of the lists (I : P) and this is the most time-costly operation in the computation of

Hilbert-Poincare series.

A.M. Bigattil Journal of Pure and Applied Algebra 119 (1997) 237-253 245

5.1.4. The new choice: simple-power-pivot
Despite the fact that GCD-pivot strategy has a better behaviour than the indetetmi-

nate-pivot, the latter may give better timings. In fact, if the pivot is a simple-power,

the reduction of (I,Y) is faster and there are nice tricks to discard a priori most of

the divisibility tests normally needed while interreducing the list (I : 9’). (See Section

5.2.)

Moreover, we are usually interested in computing the Hilbert-Poincare series for N-

graded algebras, especially standard algebras. In this case (I) is a univariate polynomial

and the procedures operating on univariete polynomials can easily be optimized leading

to very fast computation for the base-cases. (See Section 7.1 .l.)

It follows that for N-graded algebras it might happen that the advantage given by

the easier interreductions of the indeterminate-pivot approach may be bigger than the

disadvantage of computing a larger number of base-cases.

Experience shows that most of the GCD-pivots are actually simple-powers after a few

recursion steps and therefore the tricks are applicable to them, but the few multivariate-

pivots lead to very costly interreductions and make this better choice slower in practice.

At this point the two winning ideas are a simple-power pivot to have faster inter-

reductions and a “medium” pivot to have more balanced splittings. The compromise

we suggest is a simple-power of the indeterminate occurring most, with exponent being

that of this indeterminate in the GCD of two randomly chosen generators.

5.1.5. Comparison of’ indeterminate-pivot, simple-power-pivot and GCD-pivot
Table 2 shows that the GCD-pivot strategy gives fewer base and pivot-cases than the

indeterminate-pivot and the simple-power-pivot but the best timings are usually given

by the simple-power strategy.

The timings refer to the computation of the standard Hilbert-Poincare series and it is

easy to see that they are in general fairly similar. We give this detailed table to explain

to the programmers the different behaviours and let them choose the best strategy for

the class of examples they want to compute. For example, if the computation of the

Table 2

Example Ind Mon Base-cases

ind/SPiGCD

Pivot-cases

ind/SP/GCD

Time

ind/SP/GCD

mayr 12 21

mayr13 21

*prod4 32

square5 25

mayr22 31

mayr23 31

* prod5 50

power 10, 50 IO

power 20, 50 20

power 20, 20 20

444 898/889/766 586/614/483 0.2/0.2/0.2
610 1912/1404/1286 124219211752 0.5/0.4/0.4

500 1113/1113/773 1036!1036/685 0.4/0.4/0.3
1371 2033/1981/1686 18801182411493 0.9/0.9/0.9

3204 12611/10692/9194 80451676615254 4.514.114.1

8100 58 101134608132 191 40 5 I 8122 706118 465 21.7114.7125.8
4785 45 564145 564144 635 39 709139 709135 227 39.9l38.9141.1
10000 3 1761309513095 3 175/3094/3095 7.115.518.2
10000 1529/1485/1485 1528/1484/1483 6.314.816.3
10000 1499/1485/1484 1498/1484/1483 5.214.716.3

246 A.M. BiqattilJournal of’ Pure and Applied Algebra 119 (1997) 237-253

base-cases is relatively slow, (e.g., multivariate series, integers with arbitrary precision,

or computing small examples by hand) it is very important to minimize the number

of the base-cases and then the best choice tends to be the GCD-pivot.

In the table there is an asterisk with prod4 and prod5; it is to point out those

examples in which all the exponents are equal to one and then the simple-power-pivot

and indeterminate-pivot strategies coincide. On the chess-examples, because of their

particular structure, the three pivots are identical.

The examples power 20,20 and power 20,50 are essentially the same: in fact the

power-products in power 20,50 are given by the power-products in power 20,20 mul-

tiplied by X, 3o Comparing them shows how the indeterminate-pivot slows down if we .

raise the exponents, whereas the behaviours of the simple-power-pivot and the GCD-

pivot do not change.

Notice also that the number of base-cases may be lower than the number of the

power-products in the input list. This means that these strategies with our more general

base-cases overcome the optimality on Bore1 Fixed ideals proved in [2, 31 for their

algorithm.

5.2. Reducing and dividing by the pivot

After having chosen a pivot 9 for the ideal I the next step is to compute the two

lists of the power-products generating the two ideals (I,.!?) and (I : 9). We assume

that the initial input is an interreduced list and we want to work on interreduced lists

at every step. This choice is quite natural because a list is usually much smaller after

being interreduced. Moreover, we shall see that interreducing the two lists is made

considerably easier by knowing that the original list is interreduced.

In general, if we want to interreduce a list of power-products we have to remove all

the redundant generators. In other words, for every power-product we must check all

the other power-products in the list to see whether there is one dividing it. To reduce

the number of divisibility tests we can order the list by decreasing degree and compare

our power-product only with the following ones. Even so that number is very big: in

fact if the list has n power-products the worst case gives i,(, - 1) comparisons - this

happens for example if the list is already interreduced. However fast and optimized

the divisibility tests between two power-products might be (see Section 7.2. l), the

interreduction will take a very long time on a large input.

In our particular case, we know how the lists we need to interreduce were constructed

and we can take advantage of this information to avoid a priori some divisibility tests.

Let L be the minimal set of power-products generating I. A list of generators for (Z,P)

is given by L U (9) and a list of generators for (I : 9) is given by L’ := (L : 9) =

{CT : WI,,, where (T : 9) := 6.

5.2.1. Interreducing L U {9’}

From the fact that L is interreduced it is very easy to interreduce LU {Y}: in fact we

only have to reduce L by 9, i.e., to delete from L all the power-products divisible by 9.

A.M. BigattiiJournal of Pure and Applied Algebra ii9 (1997) 237-253 24Y

Table 3

Example Ind Mon Only total-splits 8 - N/2 4 -N/2 8 -N

mayr 12 21 444 0.2 0.2 0.3 0.3

mayrl3 21 610 0.4 0.4 0.4 0.4

prod4 32 500 0.4 0.4 0.5 0.5

square5 25 1371 0.9 0.9 1.0 I .o

mayr22 31 3204 3.9 4.1 4.4 4.5

mayr23 31 8100 14.0 14.7 15.5 15.9

prod5 50 4785 37.8 38.9 41.6 43.6

knight 8x8 64 168 169.1 29.2 33.0 30.9

king 8x8 64 210 516.4 77.8 88.1 68.1

simple bad example 50 49 216.1 10.5 12.1 01

Again, these timings should help the programmers to choose according to the exam-

ples they want to compute. Checking short lists never seems to be useful (4 N N/2)

and general splittings are not usually important if they are interested only in examples

produced by a Grijbner basis computation.

Warning: even though the Hilbert-Poincare series is correct, the coefficients of the

Hilbert-Poincare numerator of the chess examples grow larger than 32 bits.

7. Data structures

7.1. Polynomial.7

We have seen that we need only a few and very specialized operations on poly-

nomials. Recall from Section 2 what we want to compute:

l For the base-cases

(.Y,?$l , . .) y$) = I-I (1 _ pkg Xi:) _ t&g F’ n (1 _ t&X? ““’

i= I ,_.., s (i=l,...,s))

l For the pivot-case

(I) = (I, 9) + tdes *(I : 9).

l For the splitting-case

(1) = (I,). . . (I,.).

Thus, if P, PI and P2 are polynomials and D a (multi)degree, the only operations

we need are:

(1 - P)P) PI - tDp2 , PI + tDp2 , P, .P2.

It is worth implementing optimised functions to compute them directly instead of

using the generic arithmetic operations. In particular, the function which computes

2.50 A. M. Bigattil Journal of Pure and Applied Algebra 119 (1997) 237-253

(1 - tD)p is called many times for each base-case, thus it must be very efficient.

Moreover, it can often be used in splitting-cases instead of PI P2: in fact, when we

split the list generating I, most of the Zj’s have only one simple-power or one non-

simple power-product and no simple-powers, thus their Hilbert-Poincare numerator are

of the form (1 - tD) and can be multiplied using (1 - tD)P. It follows that there are

very few “real” multiplications to compute, so the operation PI . P2 does not need to

be particularly efficient.

7.1. I. Univuriate polynomials

The numerator of the Hilbert-Poincare series of an N-graded ideal (either standard or

weighted) is a univariate polynomial. To make the computation very fast in this case,

we chose to represent univariate polynomials as vectors of integers, and implemented

only the four operations described earlier.

The resulting polynomial actually tends to be “dense”, i.e., with very few zero co-

efficients. This fact means that in our case the dense representation is faster and less

space-costly than the sparse representation.

In the case of standard Hilbert-Poincart series we can precompute a table of powers

of (1 - t) thus saving many calls to the function computing (1 - tD)P: in fact, in many

base-cases all the simple-powers have degree 1, so fljC ,,.,,, s (1 - tdegX2) = (1 - t)“.

Note that a pre-computed table of this sort works only for the standard case and

cannot be easily generalised for weighted or multivariate Hilbert-Poincart series.

7.2. Power-products

The computation of the Hilbert-Poincare series involves several calls of functions

operating on power-products. In particular, among all the functions, the divisibility test

between two power-products is the one called most often. Then it is very important

to choose a good representation of power-products in order to get fast operations on

them.

Let m be the power-product X,r’ .A’$‘. Using the dense representation, i.e., storing

the exponents TI , . . . , TN in a vector, we can access directly to the exponent of a given

indeterminate. Using the sparse representation, i.e., listing the pairs (ni, T,,), . , (TZ,~, T,z,)

with T,,, # 0, we skip useless operations on zero exponents and, if implemented as

a linked list, it is less space-costly when the number of indeterminates with non-zero

exponent is small.

We decided to get advantage of all the information given by the two representations

to make each operation as direct as possible. So our power-products are given by:

l Dense representation: a vector of integers with the exponents of all the indetermi-

nates, (Ti,. . , TN).
l Support: a vector of integers with the non-ordered list of the indices of the indeter-

minates with non-zero exponent (ni , . . . , n,).

l Bit-support: a 32-bit unsigned integer representing part of Supp(m) that we shall

describe shortly.

A.M. Bigattil Journal of’ Pure and Applied Algebra 119 (1997) 237-253 247

Note that in the case 9 is a simple-power, then the divisibility test with 9’ is the

simplest possible because we have to check only one exponent for each power-product

in the list L.

5.2.2. Interreduciny L’
Recall that L is interreduced, i.e., for each T, = X,“ . . . Xi‘ and Tb = X,b’ . .X$ if

T, # Tb, then T, does not divide Tb and hence there exists an i such that a, > b,.
Consider the case of a simple-power-pivot .P = Xz. There are three interesting

remarks:

l If up 5 b,, then i # p and (T, : 9) cannot divide (Tb : 9) because we still have

a, > b, in these two power-products.

l If up > d, b, > d, then (T, : 9) cannot divide (Tb : 9) because we still have ai > b,

in these two power-products: if i # p then ai > bi, and if i = p then a,-d > b,-d.
l If up > d > b,, then (T, : 9’) cannot divide (Tb : 9) because the exponent of X,

in (T, : Y) is positive whereas in (Tb : 9) it is 0.

In summary:

Proposition 1. DeJine

L[r] := {T, EL 1 up = r} for r = O,...,d;

L[d + I] := {T, E L 1 up > d},

then
1. L’[s] := (L[s] : 9) is interreduced for each s = 0,. . ,d + 1;

2. a power-product in L’[s] may divide some power-product in L’[r] only $ r c s
5 d.

These remarks drastically reduce the number of divisibility tests, but they do not

easily generalise for non-simple-power pivots, not even for power-products with only

two indeterminates. Take, for example, .Y = x3y3, T, = xy3zn and Tb = x2zb: then

(T, 9) = za and (Tb : 3’) = zb, so it is clear that nothing can obviously be said a priori

about which may divide which knowing only the degrees of the “pivot-indeterminates”.

But there is a natural extension for LIO] and L[d + 11: the first, L,, given by the

power-products coprime with the pivot, the second, Lbm, given by the “big-multiples”

of the pivot, where T, is a big-multiple of Tb if ai > bi for every b; # 0; with similar

reasoning we get:

Proposition 2. 1. (L, : 9) and (Lb, : 9) are interreduced,
2. the elements of (L, : 9’) divide no other power-product in L’;
3. the elements of (Lb”, : 9’) neither divide nor are divided by any other power-

product in L’.

248 A. M. Bigattil Journal of Pure and Applied Algebra I I9 (1997) 237-253

It follows that the bigger these subsets are, the fewer divisibility tests are needed

in order to interreduce L’; in other words, the smaller the pivot, the faster the

interreduction.

6. The splitting-case

Recall from the definition of splitting-case (Section 2.2) that it occurs when we

can partition the set of the indeterminates into disjoint non-empty subsets X1,. . . , X,Y

such that each generator of our monomial ideal I belongs to a k[Xj] for some j; let

I, := I n k[X,j]. In this case, the Hilbert-Poincare series can be computed via (5):

(1) = (4) . ‘. (Zr).

Let L be the n-list generating I. If n is large, checking if such a partition exists

might be very costly. Moreover, in general, its existence is quite unlikely when II is

much larger than N, the number of indeterminates, and if it exists it often leads to

splitting L into a l-list and an (n - I)-list, a splitting which does not improve much

the behaviour of the computation.

Definition 1. If a splitting-case occurs when the list “has become” very short after

some pivot-cases, then usually the non-simple power-products are pairwise coprime.

We call this special situation total-splitting-case.

The total-splitting-cases are far faster to spot: in fact, to compute the pivot we need

to look for the indeterminate occurring most, so we simply have to check if it occurs

only once to know whether it is a total-splitting-case or not. Furthermore, they are

computed more directly than the splitting-cases because we know a priori that the lists

generating Z,, . ,I, are at most l-lists.

After these remarks it seems it is not worth considering the general splitting-case.

But the computation of some Hilbert-Poincare series might be much faster if we look

for them: recall the “Chess Examples” (Section 4) or the most dramatic “Simple Bad

Example” described in [4], generated by

Our experience suggested this compromise: we look for the possible partition only

when 8 5 n 5 N/2. We exclude lists longer than N/2 because checking them is slow

and very likely useless; we exclude n < 8 because such a short list would be more

quickly computed via pivot-cases and total-splitting-cases.

Table 3 shows that this choice might slow down a little bit the computation of some

examples whereas for some others the improvement is evident. For completeness we

show also the timings obtained looking for general splitting-cases when 4 5 n 5 N/2

and when 8 < II < N.

A.M. BigattilJournal of Pure and Applied Algebra 119 (1997) 237-253 251

This way of representing power-products looks too space-costly, but in general the

input list for our algorithm is the output of the computation of a Grobner basis. So

you can assume that if you have enough memory to compute a Grobner basis with

such an output, then you have enough memory to compute its Hilbert-Poincare series

using this redundant representation.

7.2.1. Bit-support

Given two power-products m and m’, if Supp(m) is not contained in Supp(m’), then

m cannot divide m’. When the number of indeterminates is large, power-products tend

to have several zero exponents. Thus, checking the supports often tells us when the

divisibility test would fail.

We represent Supp(m) = {Xi,, . . . , Xi,} by the 32-bit unsigned integer whose binary

expansions have 1s in the ij-th places and 0 elsewhere, i.e.,

This representation, which takes very little memory, allows us to compare the supports

very quickly via built-in bitwise functions (we thank Thomas Yan for suggesting this

technique):

Example 5. Supp(XpXjX,) = (X1,X 3, 6 corresponds to I +22+25 = 37 = IOOIOI~. X }

Supp(XiXiXs) = {Xi,X3,Xs} corresponds to 1+2’+2’ = 133 = 10000101~. Bitwise-

AND gives 1012 = 5 # 37, i.e., the intersection of the two supports is {Xi,Xj} which

is strictly contained in {Xi,X3,X6}, and this tells us that the first power-product cannot

divide the second. Moreover, note that (Supp(m) n Supp(m’)) = 0, i.e., (bit-Supp(m)

AND bit-Supp(m’)) = 0, if m and m’ are coprime.

Obviously, a 32-bit integer can represent only 32 indeterminates and obviously this

sort of representation is not forced to use 32 bits. We decided to use “long” integers

because they are the largest allowed by ANSI C, and they usually take 32 bits.

We tried some tests with more than 32 indetetminates keeping a list of integers in

order to have a complete representation for the support, but the advantage we obtained

by this more general structure is smaller than the cost of managing it. However, notice

that such a list is certainly a good representation of square free power-products for

algorithms computing the dimension.

7.2.2. Divisibility test

Let m and m’ be two power-products. The divisibility test is the function saying

whether m divides m’. It is computed checking whether the bit-support of m is contained

in the bit-support of m’; if it is, then a full divisibility test is computed checking the

exponents in m and in m’ of the indeterminates in the support of m.

252 A.M. Big&tit Journal of Pure and Applied Algebra 119 (1997) 237-253

Table 4

Example Ind Mon DT ISupp(m)l DT bit-Supp(m) DT

mayr 12 21 444 61 874 41 712 2 003
mayr13 21 610 83 614 56 004 3 031
prod4 32 500 187 570 159 071 2 951
square5 25 1371 785 670 508 723 7 952
mayr22 31 3204 1 639 522 1 002 749 25 734
mayr23 31 8100 5 289 321 2 705 617 91 373
prod5 50 4785 22 912 018 19 755 624 456 413

The “DT” column in Table 4 gives the number of divisibility tests we need to com-

pute the Hilbert-Poincare series and the “bit-Supp(m) DT” column shows the number

of full divisibility tests after checking the bit-support.

In order to emphasize the importance of the information given by the bit-support,

we show in column “ISupp(m)I DT” how many full divisibility tests we would have

to perform after having verified only that the cardinality of the support of m is smaller

than the cardinality of the support of m’.

8. Timings

Table 5 compares the timings given by our implementation in CKiA 3 (currently

in M-version) running on a 50MHz Sun Microsystems Spare Station 10, and compiled

with gee 2.5.6, and the best timings published in [2]. We recall that they used a slower

Spare Station 1.

The two timings given in the CKb4 column, refer to the algorithm computing time

and the complete Poincare function time, i.e., they differ only by the time spent in

reading and storing the input file.

We remind that the timings we give are referred to standard Hilbert-Poincare se-

ries computations with 32-bit coefficients (all these Hilbert-Poincare numerators are

computed correctly) and assuming the input list interreduced.

Table 5

Example Ind Mon Cc&4 3 B&S

mayr12 21 444 0.2410.36 21
mayr13 21 610 0.37/0.53 45

prod4 32 500 0.4410.55 35
square5 25 1371 0.9111.17 186

mayr22 31 3204 4.1114.86 3056
mayr23 31 8100 14.67116.65 22013
prod5 50 4785 38.88139.77 10403

A.M. Bigattil Journal of Pure and Applied Algebra 119 (1997) 237-253 253

Acknowledgements

Sincere thanks go to L. Robbiano, T. Yan and J. Hollman for their useful remarks

and suggestions.

References

[I] M.F. Atiyah and 1.G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley Series in

Mathematics (Addison-Wesley, Reading, MA, 1969).

[2] D. Bayer and M. Stillman, Computation of Hilbert functions, J. Symbol. Comput. 14 (1992).

[3] A.M. Bigatti, M. Caboara and L. Robbiano, On the computation of Hilbert-Poincart Series, AAECC

J. 2 (1991).

[4] A.M. Bigatti, P. Conti, R. Robbiano and C. Traverso, A “Divide and Conquer” algorithm for Hilbert-

Poincare series multiplicity and dimension of monomial ideals, Proc. of AAECC-IO, Lecture Notes in

Computer Science, Vol. 673 (Springer, NewYork, 1993).

[S] B. Buchberger, Griibner bases: an algorithmic method in polynomial ideal theory, in: N.K. Bose, ed..

Recent Trends in Multidimensional Systems Theory, chap. 6 (Reidel, New York, 1985) 184-232.

[6] M. Caboara, G. De Dominicis and L. Robbiano, Multigraded Hilbert mnctions and Buchberger

algorithm, Proc. ISSAC 96, to appear.

[7] A. Capani, G. Niesi and L. Robbiano, CoCo4, a system for doing Computations in Commutative Algebra.

Available via anonymous ftp from lancelot .dima.unige. it (1995).

[8] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness

(Freeman, San Francisco, 1979).

[9] P. Gianni, T. Mora, L. Robbiano and C. Traverso, Hilbert functions and Buchberger algorithm, Preprint

(1993).

[lo] J. Hollman. On the computation of the Hilbert series, Latin 92, Sao Paulo, Lecture Notes in Computer

Science, Vol. 583 (Springer, New York, 1992).

[I 1] R.M. Karp, Reducibility among combinatorial problems, in: R.E. Miller and J.W. Thatcher, eds..

Complexity and Computer Computations (Plenum Press, New York, 1972) 855103.

[121 M.V. Kondrat’eva and E.V. Pankrat’ev, A recursive algorithm for the computation of Hilbert polynomial.

EUROCAL 87, Lecture Notes in Computer Science, Vol. 387 (Springer, New York, 1987).

[l3] F.S. Macaulay, Some properties of enumeration in the theory of modular systems, Proc. London Math.

Sot. 26(2) (1927) 531-555.

[14] M. Miiller and T. Mora The computation of the Hilbert function, EUROCAL 83, Lecture Notes in

Computer Science, Vol. 162 (Springer, New York, 1983).

[l5] R.P. Stanley, Hilbert functions of graded algebras, Adv. Math. 28 (1978) 57-83.

